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spatial separation of Ru3+ and BV+ and may be limited by the 
fact that the potentials of the 2DQ2+Z+ and BV2+/+ couples are 
separated by only 160 mV, so that back electron transfer from 
BV+ to Ru3+ via 2DQ2+Z+ is possible. It is likely that isoenergetic 
electron exchange along the BV2+ chain depicted in Scheme I 
significantly enhances the charge-separated state lifetime; in zeolite 
Y this electron-hopping rate, measured electrochemically,10a is 
on the order of 105 s~'. We note finally that this self-assembling 
zeolite-based triad resembles the membrane-bound special pair-
pheophytin-quinone triad in the reaction center of photosynthetic 
bacteria;16 there, a similar spatial arrangement and ordering of 
redox potentials contribute to two extremely fast forward elec­
tron-transfer steps and to a long-lived charge-separated state.17 
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We wish to describe an unusual example of an organometallic 
process for the activation of dioxygen as oxide. In our search for 
organometallic oxidants,1 we had found that the CpMCl3

0/" 
electrochemical couple increases 750 mV by changing from M 
= Ti to M = V. This observation prompted an examination of 
(cyclopentadienyl)chromium halides and oxohalides. Complexes 
of the type [CpCrX2] 2 (Cp = JJ5-C5H5) are well known, but their 
redox properties have not been reported. 

Reaction of [Cp*Cr(CO)2]2
3 (Cp* = ^-C5Me5) with excess 

Br2 in CH2Cl2 produces a green microcrystalline solid after fil­
tration and solvent removal.4 Extraction of the solid with THF 
yields blue [Cp*CrBr2]2 (1) isolated in 97% yield.5 Analogous 

(1) (a) Morse, D. B.; Hendrickson, D. N.; Rauchfuss, T. B.; Wilson, S. 
R. Organometallics 1988, 7, 496. (b) Morse, D. B.; Rauchfuss, T. B.; Wilson, 
S. R. J. Am. Chem. Soc. 1988, 110, 2646. 

(2) (a) Fischer, E. 0.; UIm, K.; Kuzel, P. Z. Anorg. AlIg. Chem. 1963, 319, 
253. (b) Muller, B.; Krausse, J. J. Organomet. Chem. 1972, 44, 141. 

(3) King, R. B.; Iqbad, M. Z.; King, A. D. J. Organomet. Chem. 1979,171, 
53. 

(4) We have fully characterized the adduct [Cp*CrBr2]2-Br2. This species 
will be described separately, as will the structure of [Cp'Cr Br2J2. 
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Figure 1. Sequential UV-vis spectra for the oxygenation of [Cp*CrBr2]2 
(1) in CH2Cl2 (0.001 M [1], 0.34 M [THF], ca. 3 atm P[O2], Ar = 5 
min). The first scan is that after addition of O2, and the arrows indicate 
positions of initial and final maxima. 

to the known [CpCrCl2J2,
6 1 can be described as trans-

[Cp*CrBr(ju-Br)]2 with Cr-Br distances of 2.521 (5) A (av, 
bridging) and 2.437 (3) A (terminal).4 

The instability of monomeric Cp*CrBr, (x > 2) from 1 and 
Br2 led us to next attempt the synthesis of a mixed oxo-halo 
chromium complex. The ir-donating ability of the oxo group has 
a decidedly strong influence on the redox properties of organo­
metallic compounds. For example, the recently reported 
[Cp*Cr02]2,

7 despite its label as a high oxidation state complex, 
is not oxidizing. This species is electrochemically reduced only 
at quite negative potentials (Ei/2 = -1360 mV vs Ag/AgCl). 

Dilute solutions of 1 (<2 mM) in CH2Cl2 react within minutes 
with dry O2 to form red Cp*CrOBr2 (2), isolated in 97% yield.8 

The rate of this oxidation is slowed by coordinating solvents such 
as THF or CH3CN. When this transformation (with added THF) 
is monitored by optical spectroscopy, we observe a clean isosbestic 
point at 612 nm (Figure 1). Interestingly, concentrated solutions 
of 1 (>100 mM) are not noticeably O2 sensitive. Furthermore, 
the M-oxo compound [Cp*CrBr2]20 is not observed when solutions 
of 1 and 2 are combined. Compound 1 represents one of the few 
isolable complexes which cleanly adds oxygen to give an oxide.9'10 

Further mechanistic and thermodynamic studies of the relationship 
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Chem. 1987, 26, 3831. (b) [Cp*Re02]2: Herrmann, W. A.; Serrano, R.; 
Bock, H. Angew. Chem., Int. Ed. Engl. 1984, 23, 383. (c) MoO(dtc)2: Watt, 
G. D.; McDonald, J. W.; Newton, W. E. J. Less-Common Metals 1977, 54, 
415. (d) (Cp)2NbCl: Lemenovskii, D. A.; Baukova, T. V.; Fedin, V. P. J. 
Organomet. Chem. 1977, 132, C14. 
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Figure 2. ORTEP view of Cp*CrOBr2 (2) with ellipsoids drawn at the 35% 
probability level. 

between I1 2, and O2 are planned. 
Magnetic susceptibility measurements (SQUID) on micro-

crystalline samples of 2 (nc„ (300 K) = 2.02 MB. *»efr (5 K) = 1.73 
fiB) indicate that 2 has a larger ground-state orbital contribution 
than vanadyl (VO2+) complexes.1" The IR spectrum of 2 shows 
a band at 934 cm"1 (<-Cr.0); isotopic labeling12 using ' 7 1 8O 2 resulted 
in additional absorptions at 917 and 900 cm"'. A crystallographic 
study shows that 2 adopts a typical piano-stool geometry with very 
short Cr-O7-12* (1.58 (2) A) and Cr-Br (2.393 (4) and 2.375 (5) 
A) distances (Figure 2). The substantial contraction of the 
Cr-Br bonds upon conversion to the oxide indicates Cr-Br ir-
bonding in 2. 

The metastability of 2 is indicated by the case with which it 
reverts to 1. Proton NMR studies at 80 0 C (hexamethylbenzcne 
as internal standard) indicate that 2 gives 1 in 75% yield over the 
course of 1.5 h. Upon photolysis in CH2Cl2, 2 reverts to 1 in the 
same yield. Concentrated solutions of 2 tend especially to revert 
to 1, and our attempts to grow crystals of 2 were often frustrated 
by this instability. Coordinating solvents also tend to convert 2 
into Cp'CrBr2-L (L = THF, CH 3CN). Careful addition of Br2 

to solutions of 2 as well as electrochemical reduction of 2 at -140 
mV results in concomitant deoxygenation to give 1. In the thermal 
conversions (toluene) of 2 to 1, 180-labeling studies in conjunction 
with GC-MS analyses14 indicate that the final oxygen-containing 
species are polychromates (50%), *Cp*OH" (20%), water (10%), 
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diffractomcter. 26 "C. Mo (Ka = 0.71073 A) 3.0 < 2« < 46.0" (+h+k+l) 
and 3.0 < 29 < 15.0° (=*=**/). '402 reflections (1071 unique, Ri = 0.037, 
863 observed. / > 2.58o(/)); corrected for anomalous dispersion, absorption 
(maximum and minimum transmission factors, 0.340 and 0.132 for p = 70.35 
cm"1), Lorentz and polarization effects. Direct methods (SHELXS-86) lo­
cated Br and Cr atoms; difference Fourier synthesis revealed C and O atoms. 
H atoms were not included in structure factor calculations. Non-H atoms 
were independently refined with anisotropic thermal coefficients. Variance 
between observed and calculated structure factors slightly dependent upon 
amplitude and inverse sin(9). R = 0.077 and Rw = 0.098. 

(14) Reaction solutions were analyzed by GC-MS using a methyl silicone 
gum column (H2O. PhCH2OH. PhCHO). After evaporation of the solvent, 
the residue was extracted with CH2Cl2 and analyzed by FD-MS (Cp'OH). 
The CH2Cl2-insoluble solid contained the majority of the label; it was ex­
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and oxidized solvent (e.g.. PhCH2OH and PhCHO from toluene). 
In the photochemical conversion (CH2Cl2), the major oxygen-
containing products are polychromates (70%) and water. Notably. 
O2 is not liberated in these reactions. 

The electrophilic character of 2 is indicated by its ability to 
oxygenate electron-rich substrates. Phosphincs (PPh3, PC1Bu)3) 
readily abstract oxygen from 2; 31P NMR experiments show that 
the oxidation of PPh3 is catalytic (CH2Cl2: 0.25 M PPh3. 0.003 
M 1; initial TON «. 27 phosphines/20 min at 20 "C). While the 
metal-catalyzed oxygenation of phosphines is not unusual,15 our 
observations do demonstrate the ability of 1 to repeatedly activate 
O2 without decomposition. Compound 2 will not oxygenate Et2S, 
but CpCrOBr2

16 will. This indicates that the clcctrophilicity of 
this class of oxo compounds can be adjusted by substitucnts on 
the cyclopentadienyl group. 

In conclusion, [Cp*CrBr2]2 is an unusual organometallic 
complex which activates molecular oxygen. Work is underway 
to see if this family of organometallic compounds has a future 
either as oxidants in synthesis or as oxygen carriers. 
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Metallacyclic compounds of the transition elements constitute 
an important class of organometallic species, implicated in a wide 
range of both stoichiometric and catalytic reactivity.2 6 Besides 
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